end to prevent an accumulation of water. [CGD 81–79, 50 FR 9432, Mar. 8, 1985, as amended by USCG–2003–16630, 73 FR 65161, Oct. $31,\,2008$] ## § 52.01-110 Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). - (a) Boiler water level devices. Boiler water level devices shall be as indicated in PG-60 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1) except as noted otherwise in this section. - (b) Water level indicators. (Modifies PG-60.1.) (1) Each boiler, except those of the forced circulation type with no fixed water line and steam line, shall have two independent means of indicating the water level in the boiler connected directly to the head or shell. One shall be a gage lighted by the emergency electrical system (See Subpart 112.15 of Subchapter J (Electrical Engineering) of this chapter) which will insure illumination of the gages under all normal and emergency conditions. The secondary indicator may consist of a gage glass, or other acceptable device. Where the allowance pressure exceeds 1724 kPa (250 psi), the gage glasses shall be of the flat type instead of the common tubular type. - (2) Gage glasses shall be in continuous operation while the boiler is steaming. - (3) Double-ended firetube boilers shall be equipped as specified in this paragraph and paragraph (e) of this section except that the required water level indicators shall be installed on each end of the boiler. - (4) Externally fired flue boilers, such as are used on central western river vessels, shall be equipped as specified in paragraphs (b) (1) through (3) of this section except that float gages may be substituted for gage glasses. - (c) Water columns. (Modifies PG-60.2.) The use of water columns is generally limited to firetube boilers. Water column installations shall be close hauled to minimize the effect of ship motion on water level indication. When water columns are provided they shall be fitted directly to the heads or shells of boilers or drums by 1 inch minimum size pipes with shutoff valves attached directly to the boiler or drums, or if necessary, connected thereto by a distance piece both at the top and bottom of the water columns. Shutoff valves used in the pipe connections between the boiler and water column or between the boiler and the shutoff valves, required by PG-60.6 of section I of the ASME Boiler and Pressure Vessel Code for gauge glasses, shall be locked or sealed open. Water column piping shall not be fitted inside the uptake, the smoke box, or the casing. Water columns shall be fitted with suitable drains. Cast iron fittings are not permitted. - (d) Gage glass connections. (Modifies PG-60.3.) Gage glasses and gage cocks shall be connected directly to the head or shell of a boiler as indicated in paragraph (b)(1) of this section. When water columns are authorized, connections to the columns may be made provided a close hauled arrangement is utilized so that the effect of ship roll on the water level indication is minimized. - (e) Gage cocks. (Modifies PG-60.4.) (1) When the steam pressure does not exceed 250 pounds per square inch, three test cocks attached directly to the head or shell of a boiler may serve as the secondary water level indicator. - (2) See paragraph (d) of this section for restrictions on cock connections. - (f) Pressure gages. (Modifies PG-60.6.) Each double-ended boiler shall be fitted with two steam gages, one on either end on the boiler. - (g) Salinometer cocks. In vessels operating in salt water, each boiler shall be equipped with a salinometer cock or valve which shall be fitted directly to the boiler in a convenient position. They shall not be attached to the water gage or water column. - (h) High-water-level alarm. Each watertube boiler for propulsion must have an audible and a visible high-water-level alarm. The alarm indicators must be located where the boiler is controlled. [CG FR 68-82, 33 FR 18815, Dec. 18, 1968, as amended by CGD 81-79, 50 FR 9433, Mar. 8, 1985; CGD 83-043, 60 FR 24772, May 10, 1995; USCG-2003-16630, 73 FR 65161, Oct. 31, 2008]